SMED

IMPROVED FLOW THROUGH

SHORTER PRODUCT CHANGEOVERS

Peter L. King
Lean Dynamics, LLC
May, 2009
AGENDA

- Why reduce changeover time?
- Origins of SMED ~ “Necessity is the mother………"
- The SMED process
- SMED tools
- Process plant challenges
- SMED beyond product changeovers
- SMED in real life
When the production equipment is reconfigured or modified, or controlled settings are changed….

- Product changeover
- Product transition
- Changeover
- C/O
- Set-up
CHANGEOVER ACTIVITIES

- Getting tools
- Getting replacement parts (gaskets, filters, guides)
- Cooling down
- Mechanical modifications
- Calibrating, adjusting
- Heating up
- Discarding spent parts
- Putting tools away
- Getting back to process conditions
- Getting back within product specifications
WHY IS CHANGEOVER TIME IMPORTANT?

- **Shorter changeovers reduce waste**
 - Overproduction
 - Inventory
 - Time
 - Labor
 - Defects, yield losses

- **Shorter changeovers allow faster production cycles**

- **Faster cycles reduce inventory**

- **Faster cycles increase production flexibility**

- **Simpler changeovers may be safer**
WHY IS CHANGEOVER TIME IMPORTANT?

Faster changeovers mean shorter production cycles

- **Short cycles** = less inventory
- **Short cycles** = more flexibility
- **Short cycles** = shorter lead times
ORIGINS OF SMED

Toyota, circa 1950
- Replacing a die on large body part press = several hours
- Shigeo Shingo devises a method of
 - Examining all set-up operations
 - Modifying the set-up process
 - Reducing time and waste

Toyota, circa 1960
- Replacing a die on large body part press = 15 minutes

Toyota, circa 1970
- Replacing a die on large body part press = 3 minutes

Shingo’s methods have become the standard for changeover reduction

Single Minutes Exchange of Dies
SMED IMPROVEMENT STEPS

Identify tasks which can be external

Move external tasks outside the changeover window

Simplify Internal tasks

Perform Internal tasks in parallel
SMED TOOLS

- Direct observation
- Video
- Detailed flowchart of tasks
- Activity list
- Cross-functional process map
- Point-to-point chart
PROCESS PLANT CHANGEOVER COMPONENTS

FOLLOW THE MONEY

PRODUCT A MANUAL TASKS BEGIN PRODUCT B

PHYSICS AND CHEMISTRY REACH EQUILIBRIUM

FIRST QUALITY PRODUCT B

CHANGEOVER
Categories of Process Industry changeover

How SMED applies to them
A C/O WITH ONLY MANUAL TASKS

Changing the knife positions on a slitter Between rolls……

- Loosen the knife fittings
- Measure/mark the new positions
- Move the knives to the new positions
- Tighten the fittings

SMED possibilities

- Detailed examination of all specific steps for simplification
- Are there any tasks which could be external?
- Could a second operator speed up the task?
- Consider more positive positioning mechanisms - detents
- Is laser positioning of the knives feasible?
A C/O WITH ONLY MANUAL TASKS

Changing the bag size or box size on a cereal (or fertilizer, or plastic pellet …) packaging line……

- Remove old bag stock
- Clean out the pneumatic lines
- Adjust the bag holding fixtures
- Position new bag stock
- Restart the line – test a few bags for fill and sealing

SMED possibilities

- Detailed examination of all specific steps for simplification
- Are there any tasks which could be external?
- Could a second operator speed up the task?
- Has the product sequence been optimized to minimize material cleanouts?
- Could there be a complete second set of fixtures, pre-loaded with the new size stock?
A C/O WITH CHEMICAL OR PHYSICS CHANGES

Changing the temperature on the bonding (heat treating) roll in a sheet manufacturing process……

- Set the new temperature
- Wait for the roll to reach the new temperature and stabilize

SMED possibilities

- Structured brainstorming workshop with
 - Mechanical engineers
 - Physicists
 - Mechanics
 - Operators

to conceive practical techniques for more rapid heating & cooling
Other examples......

- Changing the oven baking temperature in a bread plant
- Changing the temperature in a polymerization autoclave
- Changing the raw material feed concentrations in a chemical reaction
-
- Others??
In the application of the photosensitive emulsion to x-ray films
Changing to the next emulsion type……

- Valve off the current emulsion
- Remove the coating applicator
- Clean the applicator
- Re-attach the applicator
- Open the valve for the next emulsion
- Run the film – apply the new coating
- Allow time for the flow to stabilize and thickness to reach uniformity
- Take samples to the test lab
- Once results are in limits, begin the next roll
In the application of the photosensitive emulsion to x-ray films Changing to the next emulsion type……

- Valve off the current emulsion
- Remove the coating applicator
- Clean the applicator
- Re-attach the applicator
- Open the valve for the next emulsion
- Run the film – apply the new coating
- Allow time for the flow to stabilize and thickness to reach uniformity
- Take samples to the test lab
- Once results are in limits, begin the next roll
SMED possibilities

- Analyze the applicator removal – cleaning – replacement process
 - Internal → External?
 - Simplify the process?
 - Purchase a 2nd applicator - have it ready to go on?

- Analyze the test lab operations
 - Simplification
 - Lab lead time improvement

- Structured brainstorming with coating experts and physicists – to improve coating uniformity and repeatability
Other examples

- Changing the dyeability of synthetic carpet fibers
- Changing the particle size in a pigment grinding – milling operation
-
-
- Others?
The current state VSM can show where SMED will have the biggest impact

- Not always the steps with the longest C/O time
- The steps with long EPEI cycles
- Steps with large C/O losses
After changeover time has been reduced…..

Be sure to re-examine campaign length to how much reduction is possible

Show the improvement results on the Future State VSM
Some process equipment must be taken out of service

- *Not because of a product changeover*
- *But for a periodic overhaul*
- *Some equipment requires this every 6 months, 12 months, or 24 months*

- Pipes get blasted out
- Tanks have residue removed
- Corroded parts are replaced
- Precision rolls get resurfaced
- Catalyst beds get restored
- Extrusion dies get cleaned
Even if managed very well, these periodic shutdowns can cause all of the wastes that product changes do.

- Inventory is created to maintain supply during the outage
- Bringing tools and replacement parts to the area creates movement and transportation waste
- Yield loss, defect waste can occur as the process is restarted.

SMED can reduce these wastes just as it does with product changeovers

This is the primary application of SMED in many process pants
SMED SYNERGY WITH OTHER LEAN TOOLS

SMED is very complementary with other Lean tools

- **5S**
 - A better organized workplace will enable faster changeovers

- **Visual Management**
 - A more visual workplace enables better changeovers
 - Visual metrics help to sustain the improvements

- **Kaizen Events**
 - Kaizen events are a good way to conduct SMED activities
 - BUT… may require more planning
 - BUT… may require specific skills
 - BUT… may not be able to demonstrate results during the week
Many books and articles use a race car pit crew as an example of changeovers done very well.

Anyone who has seen a professional automobile race can appreciate the

- Precision
- Coordination
- Purposefulness
The pit crew operation is a very strong visual image of SMED principles at work

- All tasks that can be done externally are
- All tasks have been thoroughly analyzed and simplified to be done as quickly as possible
- All internal tasks are done in parallel
- Technology has been applied where appropriate
- Everyone understands their role, and has practiced it frequently
- All pit stops are timed
- There is an intense on-going effort to continue to reduce the time

SMED IN REAL LIFE
The pit crew operation is a very strong visual image of SMED principles at work

- All tasks that can be done externally are
- All tasks have been thoroughly analyzed and simplified to be done as quickly as possible
- All internal tasks are done in parallel
- Technology has been applied where appropriate
- Everyone understands that the race can be won or lost in the pits
- Manufacturing teams should realize that operating excellence can be achieved or lost in the changeovers
Summary

- Long product changeover time adds a LOT of waste
 - Drives long campaigns, drives overproduction
 - Makes the operation less flexible, less responsive
 - Creates Inventory
- To attack this waste, Shigeo Shingo developed the SMED methodology
 - Identify external tasks - move outside C/O window
 - Simplify internal tasks, do in parallel if possible
- In Process operations, most of C/O time can be in getting back to specs
 - So SMED must identify and address this also
- After SMED has been successfully done
 - Do it again
 - Make sure to take advantage of the improvement
- SMED can have great value applied to annual shutdowns/overhauls
Questions?

peterking@LeanDynamics.us

(302) 239-1667
(302) 528-2700
SHAMELESS PLUG

This material in his presentation is featured in

Productivity Press, May 2009