Sedentary Behavior in Office Environments

Gregory Garrett, Doctoral Researcher
Texas A&M School of Public Health
Dept. of Environmental & Occupational Health
ggarrett@sph.tamhsc.edu
Educational Background

- BS in Kinesiology/ Exercise Science 2006
 - Middle Tennessee State University
- MA in Experimental Psychology 2013
 - Middle Tennessee State University
 - Emphasis in Health & Wellness
- Doctoral Candidate Environmental & Occupational Health
 - Texas A&M University
 - Emphasis in Ergonomics, Human Factors, Health & Safety
Traditional Workstations

- Estimated most American adults spend 8-9 hours daily in sedentary behavior
- Increased health risks
 - Obesity, cancers, and cardiovascular disease
- Increased Body Discomfort
 - Low back, shoulder, and neck pain
- Decreased productivity

*Most common pain areas:
Neck 53%
Wrist 33%
Shoulder 38%
Low Back 63%*
* Survey conducted by American Osteopathic Association
Health Impacts

- Prevalence of weight related risk factors
 - High blood pressures
 - High cholesterol
 - High blood sugar
- Increased diagnosis of type 2 diabetes
- Stroke
- Cancer
- Gallbladder disease
- Osteoarthritis
- Sleep apnea and asthma
Prevalence

- Percent of adults over the age of 20 who are overweight and obese\(^1\): 69%
- Percent of adolescents age 12-19 years of age obese\(^2\): 18.4%
- Percent of children 6-11 years of age who are obese\(^2\): 18%
- Percent of children 2-5 years of age who are obese\(^2\): 12.1%

\(^1\) Age-adjusted by the direct method to the year 2000 US Bureau of the Census using age groups 20-39, 40-59 and 60-74 years. Pregnant females excluded. \(^2\) Overweight defined as \(25 \leq \text{BMI} < 30\), obesity defines as \(\text{BMI} \geq 30\), Extreme obesity defines as \(\text{BMI} \geq 40\).
Obesity Costs

• Direct cost:
 • Estimated annual health care costs of $190 billion or nearly 21% of annual medical spending

• Indirect cost:
 • Obese employees miss more days from work
 • Obese employees work at less than full capacity
 • Higher rates of workers compensation payouts
 • Associated with lower wages and household income
 • Higher incidence of accidents for obese individuals
Sit-Stand Workstations

Pros:
• Increased health benefits
• Reduction in body discomfort
• Foot rails – increase body comfort

Cons:
• Expense: $250 - $1400 per desk
• Questions about sustainability and productivity performance
Hypothesis/Questions

Q. Does increased activity (standing while working) at work effect productivity?
• $H_0 =$ Increased activity at work increases productivity

Q. What is the impact of standing on cognitive performance?
• $H_0 =$ Standing while working increase cognitive performance

Q. Can behavioral interventions (computer prompts) increase and sustain sit-stand desk usage?
• $H_0 =$ Behavioral interventions increase and sustain sit-stand desk usage
Call Center Study
Productivity - Study

- 167 participants in a call center tracked for 6 months
- Treatment group
 - Stand-biased and mechanical sit-stand desks
- Control Group
 - Seated traditional desks
- Productivity measure
 - Successful calls per hour
Productivity Results

AVG Monthly Successful Encounters per Hour by Health Advisor

- Standing HC
- Sitting HC

February: 2.21 (Standing), 1.78 (Sitting)
March: 2.24 (Standing), 1.69 (Sitting)
April: 2.33 (Standing), 1.58 (Sitting)
May: 2.08 (Standing), 1.37 (Sitting)
June: 2.13 (Standing), 1.47 (Sitting)
July: 1.95 (Standing), 1.33 (Sitting)
August: 1.95 (Standing), 1.33 (Sitting)
September: 1.95 (Standing), 1.33 (Sitting)
Health Advisor Monthly Comparison

Stand Capable

226 calls per HA

Seated

133 calls per HA
Productivity Results – Clinical Advisor

AVG Monthly Successful Encounters per Hour by Clinical Advisor

Successful Encounters

Feb | March | April | May | June | July | August | Sep
1.5 | 1.45 | 1.61 | 1.55 | 1.49 | 1.41 |
1.18 | 1.07 | 1.05 | 0.88 | 0.87 | 0.86 |

Standing CA
Sitting CA
Clinical Advisors Monthly Comparison

Stand Capable: 161 calls per CA
Seated: 93 calls per CA
Productivity Results

- Control (Traditional seated desks)
- Intervention (stand-capable desks)

Mean successful encounter/hour

Month

March April May June July August
Key Results

• Treatment group
 • Self-reported seated 72% of day
 • Self-reported 75% reduction in body discomfort

• Control Group
 • Self-reported seated 91% of day

• Productivity measure
 • Overall 46% more productive per hour
 • Stand-capable increased 23% in first month to 53% over next 6 months
 • Increased productivity across both job categories
Task Performance & Cognitive Workload

Does standing while working effect cognitive performance?
Physical Activity

- Previous studies indicate cognitive processing speed influenced by changes in arousal state
- Studies specific to moderate/high intensity exercise
- Arousal states increase with physical exertion = improved cognitive performance

The Brain on Exercise

After 20 minutes of Sitting Quietly
After 20 minutes of Walking

Reprinted with permission of Dr. C. H. Hillman.
fNIRS (functional near infrared spectroscopy)

- fNIRS Measures brain activity based on refraction of infrared light to blood oxygenation levels
- Measured Pre-frontal Cortex Activation
 - 4 sources, 8 collectors
- Motion artifacts were corrected with a wavelet transformation
- Low pass filter removed systemic responses caused by heart beat
- Converted to Oxygenated (HbO) and Deoxygenated (HbR) hemoglobin concentration
- Computed mean HbO and HbR values across blocks
Cognitive Study

• 100 Texas A&M Student volunteers (ages 18-22)
• Randomly selected from 235 participant volunteers
• Measure prefrontal activation during cognitive computer task
 • N-back test – assessment that measures working memory
 • Reaction time and error rates
 • Performed standing and sitting (counter-balanced)
N-back Results

- **Reaction Time**
 - No significant difference in reaction times between sitting and standing conditions ($p = .327$)
 - Significant difference between genders. ($p = .003$)
 - Males .026 seconds faster than females in reaction times
 - No significant difference between age groups
 - Significant difference between order ($p = .011$)
 - First order .469 seconds slower regardless of condition

- **Error Rates**
 - No significant differences in error rates
 - Condition $p = .299$
 - Gender $p = .372$
 - Order $p = .138$
Cortical Arousal Levels – N-back Trials*

*Preliminary analysis. Collapsed across all conditions
Key Points

• No significant differences in performance between sitting and standing
• Standing arousal significantly higher for standing condition
• Chronic exposure may improve overall cognition = increased productivity
• Continued analysis to determine PFC affected areas
Behavioral Interventions

• Computer software
 • SitStand Coach
 • Prompts user to stand throughout the day
 • Tracks transitions hourly, weekly, monthly
 • Can run in the background to determine true desk usage
 • Tracks minutes standing/sitting
Study Protocol

- General office workers with electric sit-stand desks
- Baseline Period
 - 6-week “behind the scenes” monitoring to determine current sit-stand desk usage
 - Randomly assign half the participants to treatment group (receive prompts) or control group (do not receive prompts) based on location and floor – cluster randomized
- Experimental Period
 - 3 months of transitions
 - Prompting schedule was set at 6 min. standing for 30 min. sitting
- Surveys at 3 months post-intervention
 - Gender, age, ht., wt., current workstation setup, pre and post body discomfort, and views about software
- 200 participants completed both baseline and experimental phases
- Two geographically separate office complexes
Daily Usage

• Total active computer time between experimental and control groups were not significantly different.
• During the 3-month experimental period, experimental group stood on avg 42% more than control group.

Mean Daily Standing Transitions by Month:

- **Control (No Prompts)**
- **Experimental (Prompts)**

![Graph showing mean daily standing transitions with error bars and significance markers.](image-url)
Monthly Transitions

![Graph showing mean daily standing transitions over months]

- **Control (No Prompts)**
- **Experimental (Prompts)**

The graph illustrates the trend in mean daily standing transitions from January to April. The experimental group shows a significant decrease in standing transitions compared to the control group, with a notable difference in February and March. The trend continues to show a decrease through April.
Pre and Post Transitions

Baseline

Intervention

Mean Daily Standing Transitions

Control

Experimental
Key Results – Experimental Group

• 40% of group adhered to the prompting schedule
• No rewards for increased transitions (following prompts)
• Group reported decreased body discomfort and increased focused as reasons to continue to use desk
• Took less than a week to habituate to standing at the desk
• Nearly 75% of the group indicated that continued use of the computer prompts was “probable” or “definite”

More results coming soon
Discussion

- Increased standing desk activity increases productivity
- Increased cortical arousal could mean increased cognitive behavior
- Use of computer prompting software increased use of sit-stand desks (behavior change)
- Small increase in standing time to realize benefits
 - Productivity study – Extra 75 min. per day
 - Cognitive study- no difference in standing time between groups
 - Behavioral study - ~14 min. standing additionally per day
Questions?