Cost Justification and the ROI of Ergonomics Program Improvements

James Mallon, B.Sc., M.Sc., MBA, CPE
Executive Vice President
jmallon@humantech.com
734-663-6707

Copyright Notice
This presentation and the text, images, graphics and other content contained in the presentation are proprietary to Humantech and are protected by copyright pursuant to the Copyright Act, 17 U.S.C. § 101 et seq.

It is provided for informational purposes only, to be used by conference attendees in connection with this conference only.

This presentation is not be reproduced, distributed, or publicly displayed, nor shall any derivative works of this presentation be made, without the express prior written consent of Humantech, Inc.

ROI = \frac{\text{BENEFIT} - \text{COST}}{\text{COST}}

3 Things in 20 Minutes...
1. Approach Matters… Alot
2. Research into Benefits
3. Demonstrating Business Value

Approach Matters

Ergonomics Maturity Curve™

3 Things in 20 Minutes...

1. Approach Matters... Alot
2. Research into Benefits
3. Demonstrating Business Value

What about us?

45 Studies (1988 – 2006) which study both system and health effects Ergonomics Design

- 38 Studies did it well
- 87% (33) demonstrated win-win
- 10% (4) demonstrated a lose

Researching the LINK

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study description</th>
<th>Human effect</th>
<th>System effect</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. and Bron (2006)</td>
<td>Case study of ambidexterity in design</td>
<td>Health</td>
<td>Productivity</td>
<td>Win-win</td>
</tr>
<tr>
<td>N. and Bron (2006)</td>
<td>Case study of ambidexterity in design</td>
<td>Workload and attitude</td>
<td>Productivity and quality</td>
<td>Win-win</td>
</tr>
<tr>
<td>N. and Bron (2006)</td>
<td>Case study of ambidexterity in design</td>
<td>Workload and attitude</td>
<td>Productivity and quality</td>
<td>Win-win</td>
</tr>
</tbody>
</table>

3 Things in 20 Minutes…

1. Approach Matters… Alot
2. Research into Benefits
3. Demonstrating Business Value

A good business case presentation has:
- a clear and dimensioned ($) problem statement
- support from key stakeholders and a sponsor
- listing of possible plans to address problem
- description of selected plan/approach
- description of costs and needs
- description of benefits
- key watch outs
- key metrics
- visuals

Impact of Ergonomics

Quality
Productivity
Engagement
MSD Rate & Costs

Initial $10,000 investment

FIGURE 1. Portfolio starting at five winners versus S&P 500.

In business, the purpose of the “return on investment” metric is to measure rates of return on money invested in order to decide whether or not to undertake an investment.
ROI = \frac{P + Q + E + I - \text{Cost}}{\text{Cost of People, Equipment and Program}}

Where:
- \(P = \% \text{ Improvement} \times \text{Output } $ \)
- \(Q = \% \text{ Improvement} \times \text{Scrap / Rework cost} \)
- \(E = \% \text{ Improvement} \times \text{Turnover / Absenteeism cost} \)
- \(I = \% \text{ Improvement} \times \text{Injury/Illness cost} \)

Research into Benefits
- 60 Published Articles or Case Studies from 1995 to 2013
- Used Manufacturing operations
- Data is not normalized for length of study

Productivity
Ways to measure productivity:
- Throughput
 - Value of increase in units per shift
- Cycle time reduction
 - Value of time saved per shift

Quality
Ways to measure quality:
- Scrap Rate
 - Value of “lost” units per shift
- Rework
 - Value of time spent “fixing” errors

Engagement
Ways to measure engagement
- Gallup Survey “Q12”
 - Do you have the materials and equipment to do your work right?
 - At work, do you have the opportunity to do what you do best every day?
 - Does your supervisor, or someone at work, seem to care about you as a person?
 - At work, do your opinions seem to count?
 - Are your associates (fellow employees) committed to doing quality work?

Cost Avoidance
Ways to measure cost avoidance:
- Direct MSD compensation costs
- 1:4 ratio for indirect costs
Research into Benefits

1. 60 Published Articles or Case Studies from 1995 to 2013
2. Manufacturing operations
3. Data is not normalized for length of study

![Graph showing productivity and engagement percentages](image)

Research into Costs

- Surveyed 26 clients viewed as leaders
- Varied Manufacturing Industries
- Simple 10 question survey

![Bar chart showing cost distribution](image)

ROI = \[P + Q + E + C - \text{Cost} \]

Where:
- \(P \) = % Improvement x Output $
- \(Q \) = % Improvement x Scrap / Rework cost
- \(E \) = % Improvement x Turnover / Absenteeism cost
- \(C \) = % Improvement x Compensation cost
$$ROI = \frac{P + Q + E + C - Cost}{Cost of People, Equipment and Program}$$

<table>
<thead>
<tr>
<th>Quartile 1</th>
<th>Average</th>
<th>Quartile 3</th>
<th>Worst Case</th>
<th>Best Case</th>
<th>Average Cost</th>
<th>Avg. ROI Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit</td>
<td>$175,500</td>
<td>$268,284</td>
<td>$305,525</td>
<td>$175,306</td>
<td>$510,529</td>
<td>$175,306</td>
</tr>
<tr>
<td>Cost</td>
<td>$15,775</td>
<td>$40,335</td>
<td>$102,860</td>
<td>$15,775</td>
<td>$83,513</td>
<td>$83,513</td>
</tr>
<tr>
<td>ROI</td>
<td>3.05</td>
<td>3.81</td>
<td>1.97</td>
<td>0.69</td>
<td>13.27</td>
<td>1.08</td>
</tr>
</tbody>
</table>

$$ROI = \frac{BENEFIT - COST}{COST} = 3:1$$