Best Practices and Tools For Using Standards In Your Lean Process
Georges Bishop

Georges Bishop works with both management and unions in addressing Work Measurement and Engineered Labor Standards issues, and is a recognized expert witness in the field. George also acts as a mediator and arbitrator to resolve Engineered Labor Standards issues that exist between the parties. His consulting experience extends over many industrial sectors, with extensive experience in manufacturing, delivery, distribution and retail operations. George is a certified MOST® trainer who taught Work Measurement and Methods Engineering at the undergraduate and graduate levels at both l’École Polytechnique de Montréal and l’Université de Sherbrooke. He has published articles on Work Measurement and Engineered Labor Standards and is regularly asked to speak at international conferences and Union symposiums on these subjects. Georges published a series of articles for ISE Magazine that promote Work Measurement and Engineered Labor Standards as an essential tool for industrial engineers.

• Expert witness:
  • Georges has testified on behalf of both companies and unions on more than 15 occasions in civil, criminal and labor litigation. His expertise is very often at the core of the arbitrator’s decision.

• Arbitrator:
  • Georges acts as a mediator and arbitrator in technical litigations that center around work measurement, performance measurement and engineered labor standards implementations.

• Labor Management Systems:
  • Twenty-five years ago, Georges engineered the deployment of engineered labor standards across the entire Canadian grocery distribution network. Subsequently, Georges carved the labor management strategy of some of the largest food distributors in North America. Georges is also a pioneer in the development of Discrete Labor Management Systems (DLMS) for distribution environments.
Contents

Engineered Labor Standards ("ELS")

Why & When To Use ELS

Work Measurement Workflow
“We can see and feel the waste of material things. Awkward, inefficient, or ill directed movements of men, however, leave nothing visible or tangible behind them.”

Frederick Winslow Taylor

- Improve
  - Tools
  - Methods
  - Management practices
- Measure the potential of the improved process
  - Set clear productivity goals
  - Manage to these goals
- Incentivize the employees
  - Create a win-win incentive program
  - Motivate employees to achieve greater levels of productivity
Engineered Labor Standards – Improve, Measure, Incentivize

**Incentivize**
- Incentives
- Activity Based Compensation

**Improve**
- Lean
- Continuous Process Improvement
- Methods Engineering

**Measure**
- ELS

**IMI**
Engineered Labor Standards – The concept of Work Study

Work study is a generic term for those techniques, particularly **method study** and **work measurement**, which are used in the examination of human work in all its contexts, and which lead systematically to the investigation of all the factors which affect the efficiency and economy of the situation being reviewed, in order to effect improvement.

International Labour Office ("ILO")

![Work Study Diagram](attachment:work_study_diagram.png)
Engineered Labor Standards – The ELS maintenance and update cycle

Maintenance / Update

Measure

Current Process

Revised Process

Process Improvement

Health & Safety
Quality
Productivity
Engineered Labor Standards – A definition of Work Measurement

Work Measurement is the application of techniques designed to establish the time for a qualified worker to carry out a specified job at a defined level of performance.

ILO
Engineered Labor Standards – A definition of Work Measurement

Work Measurement is the application of techniques designed to establish the time for a qualified worker to carry out a specified job at a defined level of performance.

ILO

- Time Study
- Predetermined Motion Time System
- Work Sampling
- Standard Data
Work Measurement is the application of techniques designed to establish the time for a **qualified worker** to carry out a specified job at a defined level of performance.

**ILO**

- Mental Abilities
- Physical Abilities
- Sufficient Practice
Engineered Labor Standards – A Definition of Work Measurement

Work Measurement is the application of techniques designed to establish the time for a qualified worker to carry out a specified job at a defined level of performance.

ILO

- Methods
- Health & Safety
- Quality
- Adherence to the SOP
Engineered Labor Standards – A definition of Work Measurement

Work Measurement is the application of techniques designed to establish the time for a qualified worker to carry out a specified job at a defined *level of performance*.  

- Fair Day’s Work
- Incentive Pace Work
“Standard time is the total time in which a job should be completed at standard performance.

Standard performance is the rate of output which qualified workers will naturally achieve without overexertion as an average over the working day or shift, provided that they know and adhere to the specified method.”

ILO
Engineered Labor Standards ("ELS")

Why & When To Use ELS

Work Measurement Workflow
Why and When To Use ELS – Information system

• Work Measurement is an information system that provides accurate times to:
  • plan;
  • establish production costs;
  • measure efficiency.

• The flexibility of Work Measurement enables it to be used throughout the supply chain.
  • Manufacturing operations
  • Transport and Delivery
  • Distribution operations
  • Retail operations
  • Service industry
Why and When To Use ELS – Breaking the stigma

- Production System Input
- Process Design/Optimization
- Workforce Management
- Engineered Labor Standards
- Product Design
- Scheduling
- Activity Based Compensation

© 2019 G.H. Bishop Global – Reproduction or distribution without G.H. Bishop’s prior consent is prohibited
Why and When To Use ELS – When should ELS be part of your process?

- **Product/Service Design**
  - Ease of fabrication
  - Ease of assembly

- **Process Design**
  - Methods
  - Layouts
  - Flow
  - Training Material

- **Production**
  - Learning curve
  - Scheduling & Planning
  - Accountability
  - Optimization

- **Best Path To Higher Efficiency**
  - The Sooner The Better

Virtually Nonexistent  Rare  Most Popular
Why and When To Use ELS – Maximizing results / Minimizing overall development cost

Product/Service Design

Process Design

Production

Virtually Nonexistent

Rare

Most Popular

Getting It Right Sooner

© 2019 G.H. Bishop Global – Reproduction or distribution without G.H. Bishop’s prior consent is prohibited
Why and When To Use ELS – Identifying the lost opportunity

![Chart showing efficiency vs. time from start of production with three lines:
- The top line represents 100% of ELS. Focus on process improvement + ELS.
- The middle line is a dashed line indicating a lost opportunity.
- The bottom line represents focus only on process improvement.

Legend:
- INCENTIVE OPPORTUNITY ZONE
- LOST OPPORTUNITY

© 2019 G.H. Bishop Global – Reproduction or distribution without G.H. Bishop’s prior consent is prohibited
Engineered Labor Standards ("ELS")

Why & When To Use ELS

Work Measurement Workflow
Work Measurement Workflow – Overview

- Standardized Process
- Element 1
- Element 2
- Element 3
- ...
Work Measurement Workflow – Conventional approach

Create Element List
- Spreadsheet

Retrieve Master Element List
- Corporate spreadsheet
- Shared drive, Sharepoint

Find Element
T. S. or PMTS

Build with T. S.

Build with PMTS

Copy Element T&V Form

T&S or PMTS

Find Element

N

Y

Create Element Allowances
- Summary spreadsheet

Enter Element Frequencies
- Summary spreadsheet

More Elements?
Y
N

Standard Completed
- Summary spreadsheet

Update Master Element List

© 2019 G.H. Bishop Global – Reproduction or distribution without G.H. Bishop’s prior consent is prohibited
Work Measurement Workflow – Shortcomings of the conventional approach

- Does not promote concurrent engineering
  - Difficult to accommodate engineering group / department
  - Hard to keep updated version of the data available to all at all times
  - Duplication / Variants of elements often found

- Not effective in highly changing environments
  - High Mix – Low Volume
  - When an iterative process is required (e.g. product development, method design)

- Not optimal for deployment scenarios such as multi site implementations
  - Lack of consistency in the standard
  - Can result in industrial relations issues in unionized environments
Work Measurement Workflow – A more integrated workflow is the solution

• Create a structured workflow
  • Promotes consistency at various levels (e.g. time study, PMTS, allowance calculations)
  • Improves overall quality of the standards
  • Facilitates training of engineering resources

• Enables concurrent engineering through a centralized database
  • Real-time update
  • Tracks element usage

• Integrates the Work Measurement tools into the workflow
  • Time Study capture device interface
  • Speed measurement radar interface
  • PMTS development interface
  • Shortens the Work Measurement process
Work Measurement Workflow – A more integrated and agile workflow
Work Measurement Workflow – More efficient Time Study process

1. Create observation form
   - Paper based

2. Take preliminary observations (n’=10)
   - Stopwatch Observation Form

3. Compute required sample n
   - Spreadsheet Data Entry

4. Take remaining observations
   - Stopwatch Observation form

5. Validate data
   - Spreadsheet Data entry
   - Control chart

6. Summarize data
   - Spreadsheet

---

7. Create template
   - UMT Manager

8. Take observations
   - UMT+
   - Android, iOS
   - Real time n

9. Validate and summarize data
   - Stat UMT

---

© 2019 G.H. Bishop Global – Reproduction or distribution without G.H. Bishop’s prior consent is prohibited
Work Measurement Workflow – More efficient Time Study process

Create template
UMT Manager

Take observations
UMT +
Android, iOS
Real time

Validate and summarize data
Stat UMT
Work Measurement Workflow – Real-time centralized elemental data
Work Measurement Workflow – Document the ELS as you build elements
Work Measurement Workflow – Integration with time data capture devices
Work Measurement Workflow – Streamlined Time Study
Work Measurement Workflow – Integrated PMTS analysis
Work Measurement Workflow – Rest & Personal Need Allowances
### Work Measurement Workflow – Standard summary

#### Standard Times Calculation

<table>
<thead>
<tr>
<th>Element</th>
<th>Normal Time (s)</th>
<th>PFA %</th>
<th>Conges. %</th>
<th>Standard Time (s)</th>
<th>Freq.</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lean Webcast</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portable Printer</td>
<td>43.13</td>
<td>0.00</td>
<td></td>
<td>49.01</td>
<td>1.00</td>
<td>21.25</td>
</tr>
<tr>
<td>LW-0001 [Place printer on waist belt]</td>
<td>9.94</td>
<td>0.00</td>
<td>12</td>
<td>11.29</td>
<td>1.00</td>
<td>11.29</td>
</tr>
<tr>
<td>LW-0002 [Place new roll of labels in printer]</td>
<td>22.32</td>
<td>0.00</td>
<td>12</td>
<td>25.36</td>
<td>0.10</td>
<td>2.54</td>
</tr>
<tr>
<td>LW-0003 [Open cover to expose labels]</td>
<td>0.77</td>
<td>0.00</td>
<td>12</td>
<td>0.88</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>LW-0004 [Feed labels and align in printer]</td>
<td>4.06</td>
<td>0.00</td>
<td>12</td>
<td>4.61</td>
<td>0.10</td>
<td>0.46</td>
</tr>
<tr>
<td>LW-0005 [Remove printer from waist belt]</td>
<td>6.05</td>
<td>0.00</td>
<td>12</td>
<td>6.87</td>
<td>1.00</td>
<td>6.87</td>
</tr>
</tbody>
</table>

© 2019 G.H. Bishop Global – Reproduction or distribution without G.H. Bishop’s prior consent is prohibited