Foreword

The effort to accumulate the Industrial and Systems Engineering Body of Knowledge represents the work of several volunteers from the Institute of Industrial and Systems Engineers, whose contributions are valued and appreciated. Notable credits to Krishnan Krishnaiyer for the design of the Industrial Engineering Body of Knowledge logos and editorial assistance.

Larry Aft
Ben Amaba, Ph.D., P.E.
Diana Berry
Joel Brock
Garry Coleman, Ph.D.
Johann Demmel, Ph.D.
Danny Faucette
Jeff Kimbell
Alison Knight
Krishnan Krishnaiyer, Ph.D.
Soundar Kumara, Ph.D.
Blake Lawis
Jessica Matson, Ph.D.

Jose Monteal
Martin Nazareth
Bryan Norman
Pat Patterson, Ph.D., P.E.
Steven Snelling
Robin Stebbins
Martin Stein, Ph.D.
Noris Torres
Ver-Non Wakefield
Gregory Watson
Joe Wilck, Ph.D.
Russel Wooten
Introduction

Industrial Engineering (I.E.) is concerned with the design, improvement, and installation of integrated systems of people, materials, information, equipment, and energy. It draws upon specialized knowledge and skill in the mathematical, physical, and social sciences together with the principles and methods of engineering analysis and design, to specify, predict, and evaluate the results typically obtained from such systems. The Body of Knowledge associated with Industrial Engineering is as broad and varied as the Industrial Engineering profession itself., like any other engineering discipline, requires a fundamental knowledge of math and science. These include Calculus, Statistics, Probability, Chemistry, Physics, and Engineering Sciences. The underlining assumption is that anyone wishing to gain proficiency in Industrial Engineering already possesses a fundamental background in basic math and science. This document represents a repository of essential information for Industrial Engineers (I.E., 's). The Industrial Engineering Body of Knowledge defines a taxonomy of relevant, I.E., concepts.

There are fourteen (14) knowledge areas in the Industrial and Systems Engineering Body of Knowledge (IISEBoK). An outline represents each knowledge area —Industrial Engineering Body of Knowledge defines what needs to be known to achieve mastery in the field. A list of references is included in each knowledge area providing the reader with a resource to the requisite detail necessary to obtain a mastery of the areas provided in the Industrial Engineering Body of Knowledge. Many of these knowledge areas contain an overlap of content. Every effort has been made to place content in the knowledge area that best represents the use of that knowledge. References are made between knowledge areas where the overlap is identified. The Industrial Engineering Body of Knowledge is structured around the fundamental knowledge areas within I.E.

Applications of the Industrial Engineering Body of Knowledge are an extension of how the I.E. knowledge areas are employed in the design, improvement, and installation of integrated systems of people, materials, information, equipment, and energy. As such, specific details of how the Industrial Engineering Body of Knowledge is used in health care, banking, electronics manufacturing, or any other specific industry are not provided. Instead, the Industrial Engineering Body of Knowledge offers the knowledge areas necessary for the design, improvement, and installation of integrated systems of people, materials, information, equipment, and energy in any industry or service area.
Industrial and Systems Engineering Body of Knowledge

1. Work Design and Measurement ... 4
2. Operations Research and Analysis .. 6
3. Engineering Economic Analysis ... 11
4. Facilities Engineering and Energy Management .. 15
5. Quality & Reliability Engineering ... 18
6. Ergonomics and Human Factors ... 24
7. Operations Engineering & Management ... 28
8. Supply Chain Management ... 31
10. Safety ... 38
11. Information Engineering .. 40
12. Design and Manufacturing Engineering .. 45
13. Product Design & Development ... 50
14. Systems Design & Engineering ... 54
1. Work Design and Measurement

Work Design and Measurement covers the tools and techniques used to establish the time for an average worker to carry out a specified task at a defined level of performance in a defined work setting. The analysis associated with Work Design and Measurement focuses on creating a standardized work environment that maximizes worker satisfaction and creates the best possible value for the enterprise and its customers.

A. Uses of Standards
 1. Uses of standards and methods for setting standards
 2. The role of standards as management information
 3. Use of production studies
 4. Reduce product cost using standards

B. Time and Motion Study
 1. Number of necessary observations
 2. Time study elements
 3. Methods
 a) Continuous
 b) Snapback
 4. Performance rating
 5. Allowances
 6. Standard time
 7. Production rates
 8. Efficiency and utilization

C. Pre-Determined Time Systems
 1. MTM variations
 2. MOST
 3. Creating standard data
D. Work Sampling
 1. Theory of sampling
 2. Number of observations and frequency
 3. Use of control charts in work sampling

E. Learning Curve

F. Line Balancing

G. Service Applications

H. Use with Labor and Unions

I. Workstation Design

J. Worker Capacity Analysis
 1. Left hand-right hand
 2. Multiple activities
 3. Work distribution charts

K. Analysis Tools
 1. Operations process charts
 2. Flow process charts
 3. Worker and machine process charts
 4. Job standard sheets
 5. Labor variance reporting

L. Job analysis
 1. Job descriptions
 2. Job evaluation

M. Wage Surveys

References:
2. Operations Research and Analysis

Operations Research and the Management Sciences include a variety of problem-solving techniques focused on improved efficiency of systems and support in the decision-making process. The realm of Operations Research involves the construction of mathematical models that aim to describe and/or improve real or theoretical systems and solution methodologies to gain real-time efficiency. The knowledge area of Operations Research is by its nature, mathematical and computational. A fundamental basis in this knowledge area includes probability, statistics, calculus, algebra, and computing.

A. Operations Research
 1. Modeling approaches
 2. Heuristic versus optimization procedures

B. Linear Programming (L.P.)
 1. L.P. applications
 a) Diet problem
 b) Work scheduling
 c) Capital budgeting
 d) Blending problems
 2. L.P. modeling techniques
 3. L.P. assumptions
 4. Simplex method
 5. Degenerate and unbounded solutions
 6. Post-optimality and sensitivity analysis
 7. Interior-point approaches
 8. Duality theory
 9. Revised simplex method
 10. Dual simplex method
 11. Parametric programming
 12. Goal programming
C. Transportation Problem
 1. Transportation model and its variants
 2. Transportation simplex method
 3. Transshipment problems

D. Linear Assignment Problem
 1. Assignment model
 2. The Hungarian algorithm

E. Network Flows and Optimization
 1. Shortest path problem
 2. Minimum spanning tree problem
 3. Maximum flow problem
 4. Minimum cost flow problem
 5. Critical Path Method (CPM) and Program Evaluation & Review
 Technique (PERT) problems
 6. Network simplex method

F. Deterministic Dynamic Programming
 1. Applications
 a) Knapsack/fly-away/cargo-loading problems
 b) Workforce size problems
 c) Equipment replacement problems
 d) Investment problems
 e) Inventory (see Operations Engineering & Management)
 2. Forward and backward recursions
G. Integer Programming
 1. Applications and Modeling Techniques
 a) Capital budgeting
 b) Set-covering and set-partitioning problems
 c) Fixed-charge problem
 d) Either-or and if-then constraints
 2. Branch-and-bound algorithm
 3. Cutting plane algorithm
 4. Traveling salesman problem and solution methods

H. Nonlinear Programming
 1. Unconstrained algorithms
 a) Direct search method
 b) Gradient methods
 2. Constrained algorithms
 a) Separable programming
 b) Quadratic programming
 c) Chance-constrained programming
 d) Linear combinations method

I. Metaheuristics
 1. Steepest Ascent and Descent (Greedy algorithms)
 2. Tabu search
 3. Simulated annealing
 4. Genetic algorithms
 5. Ant colony optimization
 6. Particle swarm techniques
J. Decision Analysis and Game Theory
 1. Multi-criteria decision making
 2. Decision making under certainty
 a) Analytic Hierarchy Process
 b) ELimination Et Choice Translating Reality (ELECTRE)
 3. Decision making under risk and uncertainty
 a) Decision tree-based expected value criterion
 b) Utility theory
 4. Two-person zero-sum and constant-sum games
 5. Robust Decision Making

K. Modeling under Uncertainty
 1. Stochastic processes
 2. Markov chains
 a) Chapman-Kolmogorov equations
 b) States and properties
 3. Stochastic programming

L. Queuing Systems
 1. Components of a queuing model
 2. Relationship between the exponential and Poisson distributions
 4. Queuing models involving non-exponential distributions
 5. Priority-discipline queuing models
 6. Queuing networks

M. Simulation
 1. Monte Carlo simulation
 2. Continuous and discrete time models
 3. Simulation methodology
 a) Sampling from probability distributions
 4. Random number generation
N. Fundamentals of Systems Dynamics

1. Principles of System Dynamics
2. Balancing Loops
3. Feedback Loops

References

3. Engineering Economic Analysis

Engineering economics is a specific knowledge area of economics focused on engineering projects. Industrial Engineers need to understand the economic viability of any potential problem solution.

A. Value and Utility
 1. Understand the difference between value and utility in economics
 2. Understand the relationship between value and utility and its importance in economics

B. Classification of Cost
 1. Understand costs to compare engineering alternatives properly
 2. First cost
 3. Fixed and variable cost
 4. Incremental and marginal cost
 5. Sunk cost

C. Interest and Interest Formulas
 1. Time value of money
 2. Equivalence involving interest

D. Cash Flow Analysis
 1. Present worth
 2. Annual equivalent
 3. Future worth
 4. Capitalized worth
 5. Benefit-cost ratio
 6. Payback periods
 a) Payback period
 b) Discounted payback period
 7. Rate of returns
 a) Internal rate of return
 b) External rate of return
E. Financial Decision Making Among Alternatives
 1. Proposal types
 2. Decision criteria for alternatives
 3. Decision criteria under limited funds
 4. Methods
 a) Ranking Methods
 i. Present worth
 ii. Annual worth
 iii. Future worth
 iv. Capitalized worth
 b) Incremental Method
 i. Internal Rate of Return (IRR)
 ii. External Rate of Return (ERR)
 iii. Benefit-Cost Ratio

F. Replacement Analysis
 1. Decision criteria for making replacement decisions
 2. Determining the economic life of an asset

G. Break-Even and Minimum Cost Analysis
 1. Evaluating two alternatives
 2. Evaluating multiple alternatives

H. Evaluation of Public Activities
 1. The general welfare of public interests
 2. Financing public activities
 3. Benefit-cost Analysis
 4. Identifying benefits, dis-benefits, and cost

I. Accounting and Cost Accounting
 1. General accounting
 2. Cost accounting
 3. Allocation of overhead
J. Depreciation and Depreciation Accounting
 1. Types of depreciation
 2. Consuming assets
 3. Depreciation methodologies
 4. Depletion
 5. Capital recovery

K. Income Taxes in Economic Analysis
 1. Profit and income taxes
 2. Individual income taxes
 3. Corporate income taxes
 4. Depreciation and income taxes
 5. Depletion and income taxes

L. Estimating Economic Elements
 1. Cost estimating methods
 2. Service life estimation
 3. Judgment in estimating

M. Estimates and Decision Making
 1. Estimating economic benefits
 2. Judgments in estimating

N. Decision making involving risk
 1. Probabilistic methods related to decision making
 2. Decision trees
O. Decision Making Under Uncertainty

1. Methods related to decision making in the absence of meaningful data
2. Payoff matrix
3. Laplace rule
4. Maximin and Maximax rules
5. Hurwitz rule
6. Minimax regret rule

P. Analysis of Construction and Production Operations

1. Critical path (see Operations Engineering & Management knowledge area)
2. Geographic location
3. Economic operation of equipment
4. Variable demand

References:

4. Facilities Engineering and Energy Management

Facilities Engineering is concerned with the arrangement of physical resources to support the optimal production and distribution of goods and services. Energy Management includes the planning and operation of energy required in facilities to support the production and distribution of goods and services. Their close interrelationship accounts for their knowledge topic described in a common section.

A. Facilities Location
 1. Single-facility placement
 2. Multiple-facility placement and tradeoffs with a single facility
 3. Location-allocation problems
 4. Global facilities

B. Facilities Sizing
 1. Customer demand / market analysis / inventory implications
 2. Product, process, and schedule analysis
 3. Equipment selection and requirements analysis
 4. Personnel requirements analysis
 5. Space requirements analysis
 a) Workstations
 b) Storage
 c) Departments
 d) Aisles
 e) Offices

C. Facilities Layout
 1. Basic layout types
 a) Applications
 b) Advantages
 c) Disadvantages
 2. Data requirements
 3. Traditional approaches
 a) Systematic layout planning
 b) Flow process chart
 c) Activity relationship chart
 d) From-to chart
 e) Distance measures
4. Basic algorithms
 a) Construction
 b) Improvement
 c) Hybrid
5. Americans with Disabilities Act
6. Evaluation of Alternative Layouts

D. Material Handling
 1. Material handling principles
 2. Unit of measure
 3. Equipment types and selection
 4. Models for material handling system design

E. Storage, Warehousing, and Distribution
 1. Storage/warehouse/distribution functions
 2. Storage policies
 3. Order picking methods and design principles
 4. Analytical models of order picking functions
 5. Storage/retrieval equipment and systems
 6. Location and layout of docks
 7. Design for racks and block stacking
 8. Warehouse layout models
F. Plant and Facilities Engineering
 1. Building codes compliance and use of standards
 2. Structural systems
 3. Atmospheric systems
 4. Enclosure systems
 5. Lighting and electrical systems
 6. Life safety systems
 7. Security and loss control systems
 8. Sanitation systems
 9. Building automation systems
 10. Facilities maintenance management systems

References:
5. Quality & Reliability Engineering

Quality Engineering covers the tools and techniques employed that help to prevent mistakes or defects in manufactured products or service processes that avoid problems when delivering solutions or services to customers. A closely related knowledge area is Reliability Engineering. These concepts are used to determine the ability of a system or component to function under stated conditions for a specified period.

Part I: Quality Definition and Fundamentals

A. Quality Concepts
 1. Design for quality
 2. Manufacturing quality
 3. Marketing/service quality

B. Fundamentals
 1. Probability
 2. Sample data
 3. Distributions
 4. Basic statistics
 5. Hypothesis testing
 6. Analysis of variance
 7. Regression analysis
 8. Histogram, box plot and probability plot
Part II: On-line Quality Engineering Methods

C. Control Charts and Process Capability

1. Variable control charts
 a) \bar{X}-chart
 b) R-chart
 c) S-chart
 d) S^2-chart
 e) Exponentially Weighted Moving Average (EWMA) chart
 f) Cumulative Sum Control (CUSUM) chart
 g) Moving range (M.R.) chart
 h) Multivariate control chart
 i) Single-stage production processes
 j) Multi-stage production processes

2. Attribute control charts
 a) Fraction defective (p-chart, np-chart)
 b) Number of defects per unit (c-chart, u-chart)
 c) CUSUM chart
 d) EWMA chart

D. Lot Acceptance Sampling

1. Attributes
 a) Single-sample plan
 b) Double and sequential fraction-defective sampling
 c) Multiple fraction-defective
 d) DoD sampling plans

2. Variables
 a) Fraction defective
 b) Standard deviation known
 c) Standard deviation unknown
 d) DoD plans

3. Process / lot fraction defective

4. Mean or standard deviation of a process / Lot
E. Rectifying inspection / auditing
 1. Lot-by-lot sampling
 2. Continuous production
 3. Toward eliminating inspection
 4. Mistake proofing
 5. Gauge Repeatability and Reproducibility (R&R)

Part III: Off-line Quality Engineering Methods

F. Design of Experiments
 1. Strategy of experimentation
 2. Basic analysis techniques, Analysis of Variance (ANOVA)
 3. Experimental principles: replication, randomization, and blocking
 4. Factorial designs
 5. Two-level factorial designs, blocking and confounding
 6. Fractional factorial designs
 7. Random factors in experiments
 8. Nested and split-plot designs

G. Regression
 1. Simple linear regression models
 2. Inference in simple linear regression
 3. Residual analysis and model adequacy checking
 4. Multiple linear regression model fitting
 5. Inference in multiple regression
 6. Model adequacy checking
 7. Variable selection techniques, stepwise regression, and related methods
H. Response Surface Methodology
 1. One factor at a time
 2. Central composite design
 3. Robust design
 4. Control factor and noise factor
 5. Cross array design
 6. Taguchi method

Part IV: Quality Management and Training

I. Lean Six Sigma
 1. Customer-focused quality
 2. Defects per million opportunities (DPMO)
 3. Process capability
 4. Value stream mapping
 5. Types of wastes
 6. Business diagnostic
 7. Decision making based on data
 8. DMAIC (Define, Measure, Analyze, Improve, Control)
 9. DMADV (Define, Measure, Analyze, Design, Verify)

J. Change Management
 1. Building support
Part V: Reliability Engineering

K. Fundamentals
 1. Definition: reliability, availability, maintainability
 2. Failure time distributions
 3. Basic system configurations:
 a) Series systems
 b) Parallel systems
 c) k-out-of-n systems
 d) Network systems

L. Reliability Testing
 1. Burn-in testing
 2. Demonstration testing
 3. Acceptance testing
 4. Accelerated testing
 5. Degradation testing

M. Failure Analysis
 1. Failure modes
 2. Failure mechanisms
 3. Fault tree analysis
 4. Failure modes and effects analysis (FMEA)

N. Maintenance
 1. Sensors and applications in maintenance
 2. Preventive maintenance
 3. Failure replacement
 4. Condition-based maintenance
 5. Group replacement
 6. Maintenance and warranty
References:

6. Ergonomics and Human Factors

Ergonomics and Human Factors as a field of research and practice are concerned with the design and analysis of equipment and devices that fit the human body and its cognitive abilities. The knowledge area includes contributions from several disciplines such as anthropometry, statistics, psychology, physiology, biomechanics, industrial design, graphic design, and operations research. It is the study of designing equipment and devices that fit the human body and its cognitive abilities. The areas of emphasis are Physical Ergonomics, Cognitive Ergonomics, and Organizational Ergonomics.

A. Ergonomic Basics
 1. Focuses of ergonomics
 2. Ergonomics and its areas of application in a work system
 3. Ergonomic interventions
 4. Effectiveness and cost-effectiveness of ergonomics

B. Organizational and Social Aspects of System Design
 1. Systems design methods for ergonomics (see Systems Design and Engineering knowledge area)
 2. Organizational aspects
 3. Psychosocial factors
 4. Litigation
 5. Cross-cultural considerations

C. Anthropometric Principles in Workspace and Equipment Design
 1. Basic body mechanics
 2. Risk factors for musculoskeletal disorders
 3. Designing for a population of users
 4. Sources of human variability
 5. Anthropometry and its uses in ergonomics
 6. Principles of applied anthropometry in ergonomics
 7. Application of anthropometry in design
 8. Designing for everyone
D. Work Capacity and Fatigue
 1. Muscles, structure, function, and capacity
 2. Occupational biomechanics
 3. Cardiovascular system
 4. Respiratory system
 5. Physical work capacity
 6. Applied physiology in designing the workplace
 7. Fitness for work
 8. Design of the Thermal Environment
 a) Fundamentals of human thermoregulation
 b) Thermoregulatory mechanisms
 c) Measuring the thermal environment
 d) Work in hot climates
 e) Work in cold climates

E. Design of Repetitive Tasks
 1. Introduction to work-related musculoskeletal disorders
 2. Injuries to the upper body at work
 3. Tissue pathomechanics
 4. Carpal tunnel syndrome
 5. Lower and upper limbs

F. Design of Manual Handling Tasks
 1. Anatomy and biomechanics of manual handling
 2. Prevention of manual handling injuries in the workplace
 3. Design of manual handling tasks
 4. Lifting, carrying and pushing
 5. NIOSH Lifting Equation
G. Design for Standing and Sitting
 1. An ergonomic approach to workstation design
 2. Design for standing workers
 3. Design for seated workers
 4. Worksurface design
 5. Visual displays
 6. Guidelines for the design of static work
 7. Computer workstation design

H. Vision, Light, and Lighting
 1. Vision and the eye
 2. Measurement of light
 3. Lighting design considerations
 4. Visual fatigue, eyestrain and near work
 5. Psychological aspects of indoor lighting

I. Hearing, Sound, Noise, and Vibration
 1. Sound and the ear
 2. Measurement of sound
 3. Hearing protection
 4. Design of the acoustic environment
 5. Noise control
 6. Effects of noise on task performance
 7. Non-auditory effects of noise on health
 8. Vibration

J. Human Information Processing, Skill and Performance
 1. Information processing models
 2. Cognitive systems
 3. Problem-solving
K. Displays and Controls
 1. Human-centered design processes for interactive systems
 2. Principles for the design of visual displays
 3. Auditory displays
 4. Design of controls
 5. Combining displays and controls

L. Human-machine interaction, human error, and safety
 1. Human error and equipment design
 2. The mental workload in human-machine interaction
 3. Psychological aspects of human error
 4. Characterizing human-machine interaction
 5. Prevention of error in human-machine interaction
 6. Accidents and safety

References:
7. Operations Engineering & Management

Operations Engineering and Management is an area of technical management dealing with the design and analysis of production and service processes. From an Industrial Engineering viewpoint, this knowledge area employs tools and techniques to ensure business operations function efficiently, using as few resources as needed, and effectively in meeting customer requirements.

A. Operations Planning
 1. Life cycles
 a) Product
 b) Service
 c) Process
 2. Forecasting
 a) Methods / Models
 b) Trend based
 c) Seasonal series
 3. Aggregate planning
 4. Market analysis

B. Project Management
 1. The project as a network
 2. Critical path analysis
 3. Program Evaluation & Review Technique (PERT)
 4. Managing multiple projects
 a) Constrained resources

C. Planning and Control for Manufacturing Systems / Projects
 1. Scheduling
 a) Master scheduling
 b) Capacity
 c) Leveling load demand
 2. Sequencing
D. Production Scheduling
 1. Job shops
 2. Continuous flow
 3. Just-in-Time / Kanban
 4. Level loading
 5. Work Schedules / Personnel Scheduling

E. Inventory Management & Control
 1. Known demand
 2. Uncertain demand
 3. Make to order
 4. Make to assembly
 5. Make to stock

F. Capacity Management
 1. Labor
 2. Equipment
 3. Materials
 4. Demand management (Voice of Customer)
 5. Throughput

G. Materials Requirements Planning
 1. Master production schedule
 2. Explosion calculus
 3. Lot synergy
 4. Multiline optimization
 5. Enterprise resource planning

H. Purchasing / Supply Chain (see Supply Chain Management)

I. Maintenance Management & Control
 1. Maintenance models
 2. Total productive maintenance
J. Organizational Issues (see Engineering Management)

K. Product Lifecycle Management
 1. Aftermarket
 2. Spares
 3. Repairs
 4. Warranty / Non-Warranty / Good-Will

L. Operational Metrics
 1. Cost
 2. Quality
 3. Service level
 4. Delivery
 5. Productivity
 6. Throughput
 7. Plan effectiveness

References:
8. Supply Chain Management

Supply Chain Management (SCM) covers the movement, production, and storage of raw materials, work-in-process inventory, finished goods, and services from the point of origin to the point of consumption or use. Suppliers, manufacturers, intermediaries, stores, and service enterprises are involved in the delivery of products and services to end customers in a supply chain.

A. Supply Chain Management Fundamentals
 1. Supply chain management processes
 2. Make/buy analysis
 3. Adding value to organizations
 4. Importance of aligning supply chain strategy with corporate strategy
 5. Supply chain risk management strategies
 6. Assessment and measurement of the effectiveness of supply chains
 7. Fundamentals of green supply chain initiatives
B. Building Competitive Operations, Planning, and Logistics

1. Dynamics within the supply chain to optimize performance and increase profitability
2. Designing agility into a supply chain
3. Lean principles in a supply chain
4. Assessing the value of demand
5. Reducing complexity in demand planning
6. Establishing collaborations to replace or improve demand estimates
7. Including supply chain factors in product design
 a) Cost
 b) Packaging
8. Aligning distribution and transportation options with supply chain strategy
9. 3PL and 4PL service providers
10. Supply chain network design
 a) Tiers
 b) Number, size, and location of facilities

C. Reverse logistics

1. Shared-resource, closed-loop systems
2. Capacity utilization from multi-directional product flow

D. Managing Product Flow

1. Inventory control methodologies (see Operations Engineering & Management)
2. Material handling systems
3. Work sourcing management
4. Transportation management
 a) Mode/Carrier selection
 b) Consolidation
 c) Vehicle routing
E. Managing Customer Relationships
 1. Customer Stratification based on their profiles and needs
 2. Understanding customer loyalty and lifetime value of a customer
 3. Establishing measures of customer satisfaction
 4. Supplier support and oversight

F. Managing Supplier Relationships
 1. Insourcing vs. outsourcing decisions
 a) On-shore
 b) Off-shore
 2. The strategic importance of purchasing and supplier relationships
 3. Supplier scorecard systems
 4. Managing the supplier lifecycle
 a) Supplier selection
 b) Contracting
 c) Onboarding
 d) Order-to-cash
 e) Decommissioning a supplier
 5. Customer data
 a) Service performance
 b) Increasing value to suppliers and customers
 6. Selection of and understanding Tier 2, 3, etc. suppliers
 7. Supplier risk management

Reference:

2. Supply Chain Management: Processes, Partnerships, Performance. Lambert, Douglas

Engineering Management is a focused area of management dealing with the application of engineering principles to business practice. Whereas Operations Engineering and Management focuses on the design and analysis of production and service processes, Engineering Management deals with the technical business side of the organization.

A. Customer Focus
 1. Needs identification and anticipation
 2. Market product strategy
 3. Fundamentals of customer relationship management
 4. Quality function deployment

B. Leadership, Teamwork, and Organization
 1. Leadership
 2. Organizational structure and development
 3. Teamwork
 4. Communication
 5. Internal corporate culture and external global culture
 6. Management

C. Shared Knowledge Systems
 1. Systems planning, design, and justification
 2. Systems development
 3. The infrastructure of a shared knowledge system
D. Business Processes
 1. Product/Process development
 2. Process management and improvement (see Quality & Reliability Engineering)
 3. Research and Development
 a) Technology management
 4. Manufacturing
 5. Transactional business processes
 6. Customer Support

E. Resource and Responsibility
 1. Resources
 2. Organizational responsibilities
 3. Ethics in the practice of engineering management

F. Strategic Management
 1. Vision and mission
 2. Environmental scanning
 3. Organizational assessment
 4. The planning processes
 5. Goals, objectives, targets, and measures
 6. Strategic planning
 7. Plan implementation
 8. Monitoring and evaluating progress
G. Human Resource Management
 1. Human capital and technical competency management
 2. Motivation theory and practice
 3. Learning, education, training, and development
 4. Performance management
 5. Compensation Management
 a) Elements of compensation
 b) Job analysis
 c) Job evaluation
 d) Incentive systems
 e) Labor contracts

H. Project Management
 1. Work breakdown structure of complex activities and form into an integrated plan
 2. Project schedules/resource allocation
 3. Cost estimating (see Engineering Economic Analysis)
 4. Risk analysis of project plans and outcomes

I. Organizational Level Performance Measurement
 1. Balanced scorecard
 2. Productivity
 3. Quality
 4. Efficiency
 5. Effectiveness
 6. Safety
 7. Customer satisfaction
 8. Financial

References:
10. Safety

Occupational Safety Engineering addresses the origins or workplace accidents, regulations, and management practices towards mitigating hazard exposures, preventing harm, and reducing liability. Safety engineering also addresses methods and measures for recognizing and controlling workplace physical hazards, as well as approaches for dealing with accidents and facilitating recovery.

A. Perspective and Overview
 1. History of safety and health movement
 2. Definition of hazards and accident statistics
 3. Theories of accident causation
 4. Effects on global competition on safety and health practice and regulations

B. USA Laws and Regulations
 1. Product safety and liability (safety in the courtroom)
 2. Consumer product safety commission
 3. Workers' compensation
 4. The OSHA Act, standards, and liability
 5. OSHA recordkeeping system
 6. Hazard communication standard (DOT regulations)

C. Hazard Recognition, Evaluation and Control
 1. Mechanical hazards and machine safeguarding
 2. Fall hazards, acceleration, and impacts
 3. Thermal stress
 4. Noise and vibration hazards
 5. Electrical hazards
 6. Fire hazards and protection
 7. Industrial hygiene and confined spaces
 8. Radiation hazards, blood-borne pathogens, and bacterial hazards
 9. Nanotechnology
D. Safety and Health Management

1. Ethics and safety
2. Emergency planning
3. Accident investigation and reporting
4. Corporate safety culture and behavior-based safety programs
5. Risk assessment/hazard analysis
 a) Preliminary hazard analysis

References:

11. Information Engineering

Information Engineering is an approach to planning, generating, distributing, analyzing, and using the collection of data in systems to facilitate decision making and business communication.

A. Differentiating Data and Information
 1. Data types

B. Systems Concepts
 1. Number systems/codes
 2. Computer organization
 3. Servers and Virtual Machines (V.M.)
 4. Data Centers
 5. Network basics
 6. ERP architectures
 7. Workflow management systems
 8. Web & mobile applications
 9. Content Management Systems (CMS)
 10. N-tier architectures
 11. Web service architectures
 12. Cloud computing and service architectures
 13. Ecommerce system architectures
 14. Systems integration concepts

C. Information Requirements for Organizations
 1. Classification of information
 2. Management requirements
 3. Decision-making requirements
 4. Operations requirements
 5. Eliciting & gathering requirements
 6. Usability and accessibility requirements
D. Designing Information Outputs
 1. Filtering
 2. Key variable reporting
 3. Monitoring
 4. Modeling
 5. Interrogative
 6. Strategic decision center
 7. Usability concepts
 8. Data visualization concepts
 9. Designing dashboards

E. Data Processing Overview
 1. Data processing resources used in information systems
 2. Organizing data processing resources
 3. Cloud and data center processing concepts
 4. Big data processing concepts

F. Database Concepts
 1. Application vs. database processing
 2. Database management systems
 3. SQL – language; joins; filters, sorting, aggregation, grouping, union/intersection/difference, ranking

G. Logical Data Organization
 1. Trees
 2. Relational
 3. Star Schema / Data Cube / Multidimensional model
 4. NoSQL models
 5. Data sharing models - CSV, XML, JSON
H. Physical Data Organization
 1. Computer storage media
 2. Pointers, chains, rings
 3. Types of data structures: lists, dictionaries, queues, stacks, hash tables

I. Storage and Processing
 1. Sequential data organization
 2. Direct data organization
 3. Data file classification
 4. File media and file organization
 5. File design
 6. Replication and distribution
 7. Backup and recovery

J. System Analysis
 1. Systems development methodology for information systems
 2. Determining the information system demand
 3. Requirements modeling
 4. Data and Process Modeling
 5. Object modeling
 6. Development strategies
 7. UML and other common diagramming tools in the analysis

K. System Design
 1. Development of specifications to meet demand
 2. Design process
 3. Data design
 4. System architecture design
 5. UML and other common diagramming tools in the design
L. System Evaluation & Justification
 1. Obtaining equipment proposals
 2. Obtaining software proposals
 3. Evaluation of proposals
 4. Acquisition considerations

M. Controls
 1. Control points for reliable data processing
 2. Security controls
 3. Encryption

N. Forms, Programs, and Procedures
 1. Forms/reports design
 2. Program specifications
 3. Programming techniques

O. System Implementation
 1. Training and education
 2. System testing
 3. System conversion
 4. Implementation follow-up

P. Management Considerations for the Information System
 1. Maintenance
 2. Auditing
 3. Project management of information systems & software projects
 4. Managing change
 5. I.T. Governance
Q. Data Analytics

1. Data preparation
2. Feature identification and evaluation
3. Model evaluation
4. Descriptive analytics
5. Clustering models
6. Classification models
7. Predictive analytics
8. Prescriptive analytics

References:
12. Design and Manufacturing Engineering

Design and manufacturing engineering focus on tools and techniques to conceptualize, engineer, produce and qualify physical products across feature-scales, production quantities, and application domains. From an industrial engineering viewpoint, this knowledge area is concerned with the development, optimization, and standardization of methods to transform raw materials into functional products to satisfy the applications' and stakeholders' requirements in the most time and cost-efficient manner.

A. Engineering Design
 1. Product Design Methodology (see Related Topics – Product Design and Development knowledge area)
 2. Dimensions, Tolerances, Limits, and Fits
 3. Computer-Aided Design (CAD)
 4. Physical Modeling and Prototyping
 5. Design for X Methodologies (Design for Machining, Design for Additive Manufacturing, Design for Assembly, Design for Quality)
 6. Other Important Considerations in Product, Process, and Systems Design – Sustainability, Legal, and Ethical Issues

B. Fundamentals of Materials
 1. Types of Engineering Materials: Metals, Polymers, Ceramics, and Composites
 2. Atomic and Crystalline Structure
 3. Mechanical Properties of Materials
 4. Physical Properties of Materials: Thermal, Electrical, Biological
C. Solidification-based Manufacturing Processes
 1. Metal Solidification, Fluid Flow, and Heat Transfer
 2. Metal Casting: Expendable and Permanent Mold Processes
 3. Design for Metal Casting
 4. Casting Quality and Inspection Methods
 5. Polymer Processing: Thermoplastics, Thermosets, and Polymer-Matrix Composites Processing
 6. Design for Polymer Processing
 7. Quality Considerations for Processed Polymer Parts

D. Material Removal Processes
 1. Theory of Metal Cutting
 2. Conventional Machining Processes: Turning, Milling, Drilling, and Related Operations and Tools
 3. Abrasive Machining Processes
 4. Non-traditional Machining Processes
 5. Machinability and Quality Considerations
 6. Design for Machining

E. Forming-based Processes
 1. Fundamentals of Metal Forming
 3. Sheet Metal Working Processes
 4. Design for Metal Forming
 5. Quality Considerations

F. Particulate Processing
 1. Characterization of Engineering Powders
 2. Powder Metallurgy
 3. Ceramics Processing
 4. Design and Quality Considerations
G. Joining Processes
 1. Welding: Fusion and Solid-State Processes
 2. Brazing, Soldering, Adhesive Bonding, and Related Operations
 3. Design and Quality Considerations

H. Additive Manufacturing (AM)
 1. Fundamentals of AM
 2. Categories and Principles of AM Processes
 3. Design and Material Considerations in AM
 4. Economics of AM
 5. Hybrid AM: Integration with Traditional Manufacturing Processes

I. Biomedical Manufacturing (B.M.)
 1. Fundamentals and Categories of B.M.
 2. Design and Material Considerations in B.M.
 3. Principles of B.M. Processes for Polymer Devices
 4. Principles of B.M. Processes for Metal Implants
 5. Principles of B.M. Processes for Polymer Scaffolds
 6. Principles of B.M. Processes for Bioink Constructs
 7. Regulatory and Economic Considerations in B.M.

J. Micro and Nano-scale Manufacturing
 1. Fundamentals of Scaling
 2. Deposition Processes
 3. Etching Processes
 4. Doping and Surface Modification
 5. Lithography Processes
 6. Surface and Wet Bulk Micromachining
 7. LIGA
 8. Scanning Probe-based Processes
 9. Self-Assembly-based Processes
 10. Economic Considerations
K. Manufacturing Planning
 1. Process Planning
 2. Group Technology and Product Families
 3. Computer Aided Manufacturing (CAM)
 4. Concurrent Engineering
 5. Metrology: Measurement and Inspection
 6. Quality Control and Assurance
 7. Lean Manufacturing and Six Sigma
 8. Cost Estimation and Economics of Manufacturing

L. Manufacturing Systems
 1. Automation and Systems Integration
 2. Numerical Control
 3. Robotics
 4. Production and Assembly Lines
 5. Production Systems, Planning, and Control
 6. Flexible Manufacturing Systems
 7. Computer Integrated Manufacturing (CIM)
 8. Cellular Manufacturing
 9. Industry 4.0: Digital and Smart Manufacturing
References:

13. **Product Design & Development**

Product Design and Development is the efficient and effective generation and development of ideas through a process that leads to new products. From an Industrial Engineering knowledge view, it is the processes and analysis employed supporting efficient decision-making during Product Design and Development.

A. Design Process
 1. State of the Art
 2. Identify need
 3. Conceptualization
 4. Feasibility analysis
 5. Production
 6. Product life cycle
B. Design Process Steps

1. Business strategy

2. Identification of need
 a) Technology development
 b) Proposal
 c) Capture

3. Definition of a problem
 a) Statement of requirements

4. Gathering of information & data

5. Benchmarking
 a) Competitive Intelligence
 b) Intellectual property

6. Conceptualization

7. Evaluation
 a) Analysis of design
 b) Decision making
 c) Trade studies
 i. Weighing and judging
 ii. Quality Function Deployment (QFD)

8. Communication of the design
C. Design Project
 1. Gating process
 2. Feasibility study
 3. Preliminary design
 a) Internal interfaces
 b) External interfaces
 4. Detailed design
 5. Verification & Test
 a) Demonstration builds
 b) Systems test
 c) Operational test
 d) Audits
 6. Planning for Manufacture / Production
 a) Factory planning
 b) Supply chain
 7. Planning for distribution
 8. Planning for use
 9. Operations & Support
 10. Planning for retirement

D. Economic Decision Making / Cost Evaluation
 1. Life cycle analysis

E. Planning & Scheduling
 1. Planning for manufacturing
 2. Project planning

F. Risk and Opportunity Management

G. Metrics for Design & Development

H. Program Leadership, Management & Control
 1. Project start-up
 2. Plans / Schedules
I. Design for Manufacturability
 1. How manufacturability can influence design
 2. Methods and procedures for production activity
 3. Work instruction / documentation for production
 4. Manufacturing process optimization

J. Design for Cost

K. Design for Six Sigma
 1. I2DOV Process (Invent, Innovate, Develop, Optimize, Verify)
 2. CDOV Process (Concept Design, Design Development, Optimize, Verify)

References:

14. **Systems Design & Engineering**

Systems Design and Engineering deals with integrating aspects of other engineering disciplines, ensuring that all likely aspects of a project or system are considered and efficiently integrated. This area contains a strong cross-coupling to Industrial Engineering. Refer to the Systems Engineering Body of Knowledge (SEBoK) for additional details.

A. **Mission Engineering**
 1. Articulation and analysis of purpose for the system

B. **Requirements Analysis and Allocation**
 1. Requirements statements
 2. Obtaining requirements
 3. Derived & allocated requirements
 4. Requirements analysis
 5. System specification
 6. Interfaces
 a) Internal
 b) External
 7. Value engineering
 8. Sensitivity analysis
 9. Trade studies

C. **System Architecting**
 1. Architecture descriptions
 2. Steps in system architecting
 3. Fundamental design choices in constructing a system
 4. 80 - 20 rule

D. **Subsystem Design**
 1. Detailed design of elements
 2. Interface control
E. System Construction
 1. Hardware, software, human components
 2. Integration

F. Verifying and Validating Requirements
 1. Verification program components
 a) Requirements
 b) Planning
 c) Success criteria
 d) Reports
 e) Compliance
 2. Test and evaluation
 3. Design of Experiments (DOE)
 4. The satisfaction of all user and customer requirements

G. Design Iteration
 1. Refinement
 2. Convergence
 3. Robust systems

H. Product & Services Design

I. Role of Models in Systems Design Process
 1. Model vs. Actual system
 2. System objectives / User input
 3. Analyzing model output for system design decisions
J. Completing the Systems Engineering Process

1. Establishing a systematic & repeatable process
 a) Technical performance measures
 b) Technical data management
 c) Configuration management

2. Life cycle costing
 a) Cost estimation models and techniques
 i. Design, development, manufacturing, operations, and supportability
 b) Cost-effective tradeoffs to customer problems (see Engineering Economic Analysis knowledge area)

3. Limitation of humans in systems

4. Risk analysis
 a) Cost, schedule, and performance risk

5. Concurrent engineering

6. Integrated logistics support
 a) Interoperability and harmonious system operation

7. Reliability, maintainability, availability (see Quality & Reliability Engineering knowledge area)

8. Quality assurance and management (see Quality & Reliability Engineering knowledge area)

9. Specialty engineering

10. Preplanned product improvement

11. Training

12. Documentation

13. Production

14. Installation

15. Operations and maintenance

16. Operations evaluation / Reengineering

17. Systems engineering management
 a) Planning
 b) Organizing
 c) Directing
 d) Monitoring
References: