Driving Value Through Clinical Practice Variation Reduction

Adam Kelchlin, MEIE, MBA, PMP, LSSBB

Dr. Phil Oravetz, MD, MPH, MBA
Ochsner Health System (Greater New Orleans Area)

Footprint
- 8 hospitals
- 38 Health Centers
- 900 group practice physicians in over 80 subspecialties
- 1,600 Community Physicians
- 13,000 employees
- #1 fitness chain with 20,000-member, state-of-the-art wellness facility
- 142 room Brent House Hotel
- 11 specialties in US News and World Report top 50

Annual Patient Activity
- More than 56,000 discharges
- More than 1.4 Million clinic visits
- More than 250,000 ED visits
- More than 72,000 surgeries
- More than 6,600 Deliveries

Revenue

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1,371</td>
</tr>
<tr>
<td>2009</td>
<td>1,419</td>
</tr>
<tr>
<td>2010</td>
<td>1,698</td>
</tr>
<tr>
<td>2011</td>
<td>1,796</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction and Kickoff
2. Orthopedics Case Analysis
3. Key Lessons Learned
4. Questions and Answers
A sustainability gap is forming where rising costs are outpacing declining reimbursements.
How do we drive toward a sustainable future?

Pursuit of Value Proposition: Integrating cost and quality improvements hand-in-hand to drive sustainable results for the Ochsner system.

We must meet (or exceed) the patients expectations at a cost that is affordable to the patient and the healthcare system.
Mission: *Reengineer Cost* structure to *Reduce Practice Variation* that allows the *System* to provide the highest quality care at an affordable cost.
Case Analysis:

Orthopedics Pursuit of Value
Mission: **Reengineer Cost** structure to **Reduce Practice Variation** that allows the **System** to provide the highest quality care at an affordable cost

Integrated Team Effort

- Physician
- Analytics
- Project Mgmt.

Focus Areas

- Examine value stream of care across Orthopedics Service Line

Our Target

- Our goal was to minimize Orthopedics cost per case by $2,400 by minimizing practice variation and improving the quality of care

<table>
<thead>
<tr>
<th>Current Cost per Case</th>
<th>Target Cost per Case</th>
<th>Reduction Target per Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12,200</td>
<td>$9,800</td>
<td>$2,400</td>
</tr>
</tbody>
</table>

Goal: “Best patient outcomes at the lowest cost”
Optimizing Value: Reverse Cost Engineering

Our Strategy: Identify highest cost Diagnosis Relationship Group (DRG) areas, determine cost drivers, and develop strategies to minimize cost impact.

Orthopedics Example

Step 1: Determine Reduction Target Per Case

<table>
<thead>
<tr>
<th>Example: DRG 470 (Total Joint Replacement - Lower Extremity) 2010 Discharges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Direct Cost per Case</td>
</tr>
<tr>
<td>Desired Savings</td>
</tr>
<tr>
<td>Target Cost per Case</td>
</tr>
<tr>
<td>Reduction Target (%) /4</td>
</tr>
</tbody>
</table>

Step 2: Reverse Engineer Reduction Target

2011 Implant Pricing Savings $700

- LOS Management (.5 Day) /1 $324
- OR Time (15 mins) /2 $420
- Implant Pricing / Utilization $956

Step 3: Develop Cost Reduction Strategies

<table>
<thead>
<tr>
<th>2011 Implant Pricing Savings</th>
<th>$700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectation Setting of 2-3 Days</td>
<td>$65</td>
</tr>
<tr>
<td>Patient Care Map Implementation</td>
<td>$65</td>
</tr>
<tr>
<td>Pre-Op Patient Education</td>
<td>$65</td>
</tr>
<tr>
<td>Increased PT (7 days a week)</td>
<td>$65</td>
</tr>
<tr>
<td>Day of the Week for Surgery</td>
<td>$65</td>
</tr>
<tr>
<td>LOS Reduction target</td>
<td>$325</td>
</tr>
<tr>
<td>OR Time Savings</td>
<td>$420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implant Avg. Cost Per Case</th>
<th>$4,832</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Cement Utilization</td>
<td>$229</td>
</tr>
<tr>
<td>New Pricing</td>
<td>$300</td>
</tr>
<tr>
<td>Non-Chargeables (OR)</td>
<td>$250</td>
</tr>
<tr>
<td>Other Utilization</td>
<td>$177</td>
</tr>
<tr>
<td>Implant / utilization target</td>
<td>$956</td>
</tr>
</tbody>
</table>
Optimizing Value: Evidence Based Medicine

Orthopedics Example

Patient Education Before Hip or Knee Arthroplasty Lowers Length of Stay

Richard S. Yoon, BS, Kane W. Nollans, MD, MPH, Jeffrey A. Geller, MD, Abrahim D. Kim, BA, Makken R. Jacobs, MA, OTR/L, and William Macaulay, MD

Abstract: Recent data show that patients undergoing total joint arthroplasty were more likely to receive evidence-based care if they underwent a preoperative education program. The aim of this study was to determine if a preoperative education program can improve patient outcomes and length of stay (LOS). A retrospective review of patients undergoing total hip and knee arthroplasty was performed. Patients who underwent a preoperative education program were compared to a control group. The preoperative education program included a comprehensive patient education program, including a digital component, and a clinician-led educational session. The results showed that patients who received the preoperative education program had a 26% reduction in LOS for total hip arthroplasty and a 32% reduction in LOS for total knee arthroplasty. The results suggest that preoperative education programs can improve patient outcomes and reduce hospital stay.

Journal of Anthroplasty Study on Impact of Education on Quality of Care and LOS

- **26% Reduction in LOS for Total Hip**
- **32% Reduction in LOS for Total Knee**

Queen of Elizabeth Study on the Impact of Pre-Operative Exercises

Pre-operative exercises group subjects demonstrated greater stride length and gait velocity at 3 wk postsurgery. At 12 and 24 wk postsurgery, gait velocity was greater, and the 6-min walking distance was significantly greater than the control group.
Optimizing Value: *Supply Chain Standardization*

Our Strategy: Engaged physicians to examine current product utilization and implant costs. Determined core vendors to move forward with and went after best in class pricing.

Orthopedics Example

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Target Savings</th>
<th>Response from Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor 1</td>
<td>6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Vendor 2</td>
<td>6%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Vendor 3</td>
<td>6%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Vendor 4</td>
<td>6%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Vendor 5</td>
<td>6%</td>
<td>21.9%</td>
</tr>
<tr>
<td>Vendor 6</td>
<td>6%</td>
<td>26.6%</td>
</tr>
<tr>
<td>Vendor 7</td>
<td>6%</td>
<td>14.7%</td>
</tr>
<tr>
<td>Vendor 8</td>
<td>6%</td>
<td>21.9%</td>
</tr>
</tbody>
</table>

1. Benchmarked Current Implant Vendors and Determined Achievable Pricing
2. Set Price Targets and Tracked Vendor Responses
3. Partnered with our Supply Chain Department to Negotiate Best Pricing
Optimizing Value: Process Engineering

Our Strategy: Deployed process engineering rigor to standardize care throughout the system via robust patient care maps, discharge planning, and transitions of care management.

Orthopedics Example

<table>
<thead>
<tr>
<th>Date of Surgery</th>
<th>Ochsner WB Patient Care Map for Total Joint Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Care</td>
<td></td>
</tr>
<tr>
<td>Nutrition & Elimination</td>
<td></td>
</tr>
<tr>
<td>Clear Fluids (Food and Drink)</td>
<td>Post Op Day 1</td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Food and drink as tolerated</td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Food and Drink</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Post Op Day 2</td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Normal Diet</td>
</tr>
<tr>
<td>Medication</td>
<td></td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Post Op Day 2</td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Normal Diet</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Post Op Day 2</td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Normal Diet</td>
</tr>
<tr>
<td>Discharge Planning</td>
<td></td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Post Op Day 2</td>
</tr>
<tr>
<td>IV fluids & Medications</td>
<td>Normal Diet</td>
</tr>
</tbody>
</table>

Note: The table above illustrates a patient care map for total joint replacement surgery at Ochsner WB, detailing the care process from day of surgery to discharge, including nutrition, activity, medication, treatment, and discharge planning.
Optimizing Value: Patient Focused Care Standards

Our Strategy: Developed standards across the continuum of care that optimized patient outcomes and reduced costs.

Orthopedics Example

- **Proposed Future State LOS Communication**: 2-3 days
- **Trainers**: PT, OT, OR Nurse, Social Worker and/or Dietician
- **Topics to be covered**:
 - Total Hip & Knee Education
 - Day of Surgery and Post Surgery Recovery Processes and Procedures
 - Pain Management
 - PT / OT Self-Care Education
 - Discharge Planning
 - Home Recovery and Exercise
 - Family Involvement in Recovery
 - Nutrition / Diet

5 Antibiotic Bone Cements, 9 Non-Antibiotic

1 Antibiotic Bone Cement, 2 Non-Antibiotic

- **Pre-Operatively (Bootcamp)**
- **Intra-Operatively (Bone Cement Utilization)**
- **Post-Operatively (Transitions Standards)**
Optimizing Value: Variation Reduction

Our Strategy: Foundational to our strategy was examining variation, and standardizing clinical practices around best practice which not only improved the quality of care but also reduced costs.

Orthopedics Example

“Variation is a thief. It robs from processes, products and services the qualities they are intended to have...”

D. Berwick
Reduced Cost Per Case

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>YTD</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$12.2K</td>
<td>$10.75K</td>
<td>$9.80K</td>
</tr>
</tbody>
</table>

Baseline Q2 Actual Goal

Reduced LOS

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>YTD</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOS</td>
<td>3.79</td>
<td>3.52</td>
<td>3.29</td>
</tr>
</tbody>
</table>

Key Learnings

- Variation in Cost can be reduced while improving patient care.
- Achieving excellence in quality and cost is a never ending journey requiring iterative monitoring, planning, and executing of opportunities.
- Physician engagement is critical to the success of the pursuit of value effort.

Overall Results

- $1.45K avg. cost per case reduction YTD!
- Annualized Savings = $1M
Key Lessons from our Journey
Key Lesson 1: This is an Effort in Physician Change Management

- **Understand the Data:** Review reports, dashboards, and scorecards for variation reduction opportunities.
- **Educate Physicians:** Highlight areas of cost / quality variation. Focus on avoidable practice expenses. Standardize best practice.
- **Engage Physicians:** Physician Champion to speak with other Service Line Physicians about variation reduction opportunities.
- **Hold Physicians Accountable:** Continue to provide transparency around the data so physicians have an understanding of key drivers.
- **Drive Sustainability:** Track results and refine approach if necessary.

Do's
- Lead discussions with data.
- Continue to provide transparency around data.
- Engage physician champion to help lead discussions.
- Discuss best practices with other sites.
- Celebrate service line successes.
- Ensure discussion is value based (components of cost / quality).

Don’ts
- Accept status quo.
- Abuse physicians’ time. Make sure you are prepared for meetings and discussions.
- Assume data is the 100% answer. There may be a good clinical reason for poor cost / quality performance that needs to be discussed with the physicians.
Key Lesson 2: This is a Never Ending Journey

The PDCA cycle was repeated multiple times in order to achieve the financial and quality opportunities.

- Iterating through the PDCA Cycle:
 - **Plan** for changes to bring about improvement
 - **Do** changes via pilots / trials
 - **Check** to see if changes are working and investigate
 - **Act** to get the greatest benefit from the change

- **Repeat PDCA Cycle**
Questions?

Contact Information

Philip M. Oravetz, MD, MPH, MBA
Medical Director, Accountable Care
504.842.0541 | poravetz@ochsner.org

Adam J. Kelchlin, MSIE, MBA, PMP, LSSBB
Director, Project Management Office
504.842.6676 | akelchlin@ochsner.org
Backup
Variation

Appropriate (Expected)

- Population based: Age, Gender
- Individual patient based
- Provider based (mission, rural vs. urban)

Unwarranted

- Care unsupported by reasonable factors
- Dartmouth Atlas: 30% of Health Care Spending

Estimates of Annual US Health Care Waste ($ in Billions)

<table>
<thead>
<tr>
<th>Category</th>
<th>Low</th>
<th>Mid</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failures of care delivery</td>
<td>102</td>
<td>128</td>
<td>154</td>
</tr>
<tr>
<td>Failures of care coordination</td>
<td>25</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Overtreatment</td>
<td>158</td>
<td>192</td>
<td>226</td>
</tr>
<tr>
<td>Administrative complexity</td>
<td>107</td>
<td>248</td>
<td>389</td>
</tr>
<tr>
<td>Pricing failures</td>
<td>84</td>
<td>131</td>
<td>178</td>
</tr>
<tr>
<td>Fraud and abuse</td>
<td>82</td>
<td>177</td>
<td>272</td>
</tr>
<tr>
<td>Total</td>
<td>558</td>
<td>910</td>
<td>1263</td>
</tr>
</tbody>
</table>

| % of Total Spending | 21 | 34 | 47 |
Why is unwarranted clinical variation bad?

- Sub-optimal clinical outcomes
- Higher costs making care unaffordable to patients
- Omissions in procedure, treatment intervention
- Unnecessary, potentially harmful care provided to patients
- Testing / Treatment overutilization that costs the system but does not benefit the patient

How can we minimize unwarranted variation?

- Draw Insight
 - Create a shared baseline to drive prioritization of opportunities
 - Variance Analysis
 - Opportunity Quantification
 - Visualization

- Connect Data
 - Harvest the relevant care process data
 - Data Requirements
 - Aggregation & Mapping
 - Quality testing

- Redesign Care
 - Design clinical processes to advance evidence-based care
 - Governance Structure
 - Care Process Modeling
 - Process Validation

- Embed Change
 - Embed clinical processes to avoid unintended variance
 - Clinical Integration
 - Decision Support
 - Benefits Realization